Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma
نویسندگان
چکیده
Reactive oxygen species (ROS) play important roles in follicular development and survival. Granulosa cell death is associated with increased ROS, but the mechanism of granulosa cell death induced by ROS is not clear. In order to define the molecular link between ROS and granulosa cell death, COV434, human granulosa tumor cells, were treated with H2O2. Compared to control cells, H2O2 induced granulosa cell death in a dose- and time-dependent manner. H2O2 induced an increase in Bax, Bak and Puma, and a decrease in anti-apoptotic molecules such as Bcl-2, Bcl-xL and Mcl-1. Both knockdown of Puma and overexpression of Bcl-xL could inhibit H2O2-induced granulosa cell death. These results suggest that suppression of Puma and overexpression of anti-apoptotic Bcl-2 family members could improve granulosa cell survival. To explore the mechanisms responsible for these findings, ROS in granulosa cells treatment with H2O2 were measured. The results showed that ROS was increased in a H2O2 dose- and time-dependent manner at the earlier time point. In addition, H2O2 induced an increase in Nrf2 and phosphorylation of JNK and p53. SP600125, an inhibitor of JNK, inhibits H2O2-induced phosphorylation of JNK and p53, and granulosa cell death. Antioxidant N-acetylcysteine (NAC) dose-dependently prevents H2O2-induced granulosa cell death. Furthermore, NAC also prevents phosphorylation of JNK and p53 induced by H2O2. Taken together, these data suggest that H2O2 regulates cell death in granulosa cells via the ROS-JNK-p53 pathway. These findings provide an improved understanding of the mechanisms underlying granulosa cell apoptosis, which could potentially be useful for future clinical applications.
منابع مشابه
Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway
The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrat...
متن کاملPropofol protects against hydrogen peroxide-induced apoptosis in cardiac H9c2 cells is associated with the NF-κB activation and PUMA expression.
BACKGROUND AND AIMS Treatment with propofol has been found to attenuate oxidative stress injury in rat cardiac cells through the inhibition of programmed cell death. However, the underlying mechanism of this beneficial effect is not clear. Previous studies showed NF-κB (NF-κB) could be activated after oxidative stress in cardiac cells, and p53 up-regulated modulator of apoptosis (PUMA) is a dir...
متن کاملBisphenol-A analogue (bisphenol-S) exposure alters female reproductive tract and apoptosis/oxidative gene expression in blastocyst-derived cells
Objective(s): One of the major endocrine-disrupting chemicals, Bisphenol-S (BPS) has replaced bisphenol-A due to public health anxiety. The present study evaluated low dosage BPS effect on female reproductive potential, hormonal disruption, and gene expression pathways of blastocyst-derived cells.Materials and Methods: NMRI female mice (...
متن کاملJNK1 Protects against Glucolipotoxicity-Mediated Beta-Cell Apoptosis
Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations fu...
متن کاملActivation of p53 and the pro-apoptotic p53 target gene PUMA during depolarization-induced apoptosis of chromaffin cells.
The pathogenesis of non-glutamatergic, depolarization-induced cell death is still enigmatic. Recently, we have shown that veratridine induces apoptosis in chromaffin cells, and we have demonstrated protective effects of antioxidants in this system, suggesting a role for Na+ channels and oxidative stress in depolarization-induced cell death. We examined the possible contribution of p53, a transc...
متن کامل